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ABSTRACT. This article explores some of the intellectual bases of the apparent cul-
tural divide between the fields of mathematics and mathematics education research. The
chasm is in part attributable to epistemologies or theoretical ‘paradigms’, fashionable in
education, that dismiss or deny the integrity of fundamental aspects of mathematical and
scientific knowledge. The solution offered is for the next generation of mathematics edu-
cation researchers to knowledgeably and thoughtfully abandon such ‘isms’ in favor of a
unifying scientific and eclectic approach to research.

1. ADDRESSING A CULTURAL DIVIDE

Several years ago approximately 200 mathematicians and scientists, in-
cluding Fields Medalists and Nobel Laureates, endorsed an unusual open
letter that was published in a leading United States newspaper in a full-
page, paid advertisement. The letter requested Richard Riley, then U. S.
Secretary of Education, to “withdraw the entire list of ‘exemplary’ and
‘promising’ mathematics curricula, for further consideration, and to an-
nounce that withdrawal to the public.” It continued,

We further urge you to include well-respected mathematicians in any future eval-
uation of mathematics curricula conducted by the U.S. Department of Education.
Until such a review has been made, we recommend that school districts not take
the words ‘exemplary’ and ‘promising’ in their dictionary meanings, and exercise
caution in choosing mathematics programs. (Klein, Askey, Milgram, Wu, Schar-
lemann and Tsang, 1999)

Many mathematics educators, and some mathematicians working to im-
prove school mathematics, responded with dismay or anger. One perspect-
ive was offered in a letter from the Chair of the Mathematical Sciences
Education Board of the National Research Council, circulated to the Board
and posted on the web with permission:

The Open Letter is notable for featuring prominent mathematicians and scientists,
and few, if any, teachers and educators who are knowledgeable about the cur-
ricula in question . . . I am a mathematician who is interested in the improvement
of mathematics education in this country, and I am deeply convinced that the
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expertise of my professional community has a vital role to play in educational
research and policy. I have done my best to achieve such involvement. But I find
that the implication symbolized by the list of signers of the Open Letter to be
not only wrong, but dangerous and damaging. Ironically, it does a great deal to
make serious professional collaboration impossible . . . I know from conversations
with leaders in the education community that they feel that, with gestures like this
Open Letter, their whole professional community is under attack by the mathem-
aticians, and that the attempts by much of that leadership to build bridges to the
mathematics community have not been met with any reciprocity. (Bass, 1999)

Before and after publication of the 1999 open letter, the popularly-termed
‘math wars’ raged furiously in several states of the U.S.A. Active, rival web
sites – ‘Mathematically Correct’ [http://www.mathematicallycor-
rect.com] and ‘Mathematically Sane’ [http://www.mathematically-
sane.com] – (respectively) denounced or promoted reform in mathematics
education, and continue to do so. For example, Mathematically Correct
quoted McEwan (1998, p. 119), as follows: “Who’s to blame for the math
crisis? The answer to this question is very simple: The National Council of
Teachers of Mathematics . . . has betrayed us.” Mathematically Sane cites
the recently-expressed view of Posamentier (2003), “On the one side there
are the mathematics educators who believe passionately in the ‘construct-
ivist’ philosophy and on the other side there is a group of conservative
mathematicians who would like to see mathematics taught as it has been
for the last many decades.”

The depth of the public controversy strongly suggests that some funda-
mental divisions, misunderstandings, or cross-purposes have come about
between research mathematicians and scientists on the one hand, and those
engaged in mathematics education research, curriculum development, tea-
cher education, and K-12 teaching on the other. Extensive personal con-
versations with colleagues in the United States and Europe confirm this
opinion. But what accounts fundamentally for the serious and possibly
widening gulf? What keeps some specialists in each field from hearing
each other thoughtfully, or learning from those who are expert in both
fields? Why is it that so many students not only fail to achieve significantly
in school mathematics, but acquire a deep aversion to it – while members
of the different educational communities hold each other to blame?

And why is it that mathematics education researchers seem to lack the
persuasive, if not definitive, empirical evidence that could resolve current
controversies in policy and practice?

Battista argued that overwhelming evidence for ‘scientifically based
constructivist theory’ is being willfully disregarded, maintaining:

[W]e should look to scientific researchers whose specialty is research in mathem-
atics education. As obvious as this seems, it is usually ignored by opponents of
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mathematics reform. Because they don’t agree with the findings of the specialists,
they seek out researchers in other areas to buttress their case. For instance, there
are educational and cognitive psychologists who occasionally conduct research
on the learning of mathematics. Unfortunately, they usually apply general, essen-
tially behaviorist theories that ignore both the methods and the results of modern
mathematics education research. (Battista, 1999)

However, there is an intrinsic implausibility to the claim that eminent sci-
entists and mathematicians are systematically rejecting scientifically valid
research, simply because they are uncomfortable with the findings. The
present article suggests a different kind of underlying explanation.

I approach the topic of this article with the conviction that deep divi-
sions are neither helpful nor necessary. All of us who teach mathematics
seek to develop complex understandings in our students – understandings
of mathematical ideas, meanings, theorems, techniques, and applications.
Simultaneously we try to extend our own complex understandings. The
latter takes place in a variety of ways.

Mathematicians, like their students, study established fields of math-
ematics with which they are personally unfamiliar. They also generate and
elaborate on new constructs, make new conjectures, prove new theorems,
and find new insights in, interpretations of, and relationships among exist-
ing results. Applied mathematicians, and theoretical scientists using math-
ematical methods, learn well-established theories and models and draw
inferences from them for their domains of application. They also develop
new mathematical models and new techniques of description. Empirical
scientists design and interpret experimental studies motivated by novel
or well-established theories, gaining new understandings of phenomena
that are expressed mathematically. The culture of mathematics and science
highly values success in these activities.

Mathematics education researchers and practitioners examine mathem-
atics and its applications from the standpoint of how students learn and
how understandings develop. This endeavor is not confined to a straight-
forward but narrow focus on pedagogical methods and their effectiveness.
Educators study the (domain-specific) psychology and epistemology of
mathematical learning, problem solving, teaching, and human develop-
ment. They attend to individual learning and to group processes, grappling
with classroom dynamics and with issues in mathematics teacher educa-
tion. They are interested in social, cultural, historical, and technological
influences on mathematics and its teaching, and concerned with affect
and motivation as well as cognition. Practitioners of mathematics educa-
tion implement current understandings as they teach in classrooms, plan
school mathematics curricula, write activities for textbooks, work with
pre-service or in-service teachers, or contribute to establishing educational
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policies and standards. The culture of mathematics education highly values
mathematical achievement and meaningful learning by students.

In addition, both communities are profoundly interested in questions
from the philosophy of mathematics – what mathematics is, how it has
developed historically, what it means to ‘do mathematics’, and why math-
ematics works so well in scientific and other contexts.

Logically speaking these efforts to develop complex understandings,
and the resulting insights, should be mutually supportive intellectually. Not
infrequently, they are.

My thesis here is that the chasm that has opened is in part attribut-
able to the long fashionableness of certain epistemologies or theoretical
‘paradigms’ in mathematics education, that dismiss or deny the integrity
of fundamental aspects of mathematical and scientific knowledge. These
include today radical constructivism and social constructivism, and to a
lesser extent socioculturalism and postmodernism, which share the char-
acteristic of being ‘ultrarelativist’ (e.g. Confrey, 1986, 1990, 2000; Ernest,
1991, 1998; Latour and Woolgar, 1986; Steffe, 1991; von Glasersfeld,
1989, 1990, 1996). They have come to replace the earlier, correspondingly
dismissive but once-dominant schools of logical positivism and behavior-
ism (e.g. Ayer, 1946; Skinner, 1953, 1974).

The experience base leading me to focus on these questions, and to
reach the conclusions described here, is rather unusual in that it includes
several crossings of the ‘cultural divide’ between research in the mathem-
atical sciences and the field of education. I was trained as a theoretical
physicist, and did my graduate and postdoctoral work in quantum field
theory. I became an assistant professor in a graduate school of education,
specializing in mathematics education research at a time when ‘behavioral
objectives’ seemed to dominate the field nationally. Later I became an
associate professor in a department of mathematics, and coordinated at
the same time a science teacher education program. I moved on to direct
a multidisciplinary university education center, and to organize a large,
successful grant-funded university/public schools partnership project for
statewide systemic change, during a period when ‘radical constructivism’
seemed to fuel the national reform agenda. For more than 30 years I pur-
sued simultaneous, successful research programs in mathematical physics
and in mathematics learning and problem solving.

These activities involved surprising and sometimes painful social and
cultural experiences. Early in my career, the effects could reasonably have
been termed ‘culture shock’. I became aware in the different academic
communities of powerful, tacitly held assumptions, beliefs, and expecta-
tions, conflicting deeply with each other. I belonged to no ‘ism’ though I
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explored, learned from, and rejected several of them. My scientific under-
standings left me profoundly skeptical of the sweeping claims and chan-
ging fashions that seemed to characterize educational research, while it
became equally clear to me that relatively few mathematical scientists
appreciated the challenges and complexities of K-12 education. The con-
flicting values of the communities to which I belonged, but did not ‘really’
belong, posed difficult career obstacles – much that was valued by one
culture was overtly derogated by the other. And the latter situation has
not improved in the three decades since my first experiences of it – if any-
thing, it is growing more severe. An acquaintance who moved several years
ago from a physics department to a graduate school of education in the
United States described the resulting ‘culture shock’ to me quite seriously
as greater than what she had experienced in emigrating to America from
Russia.

The different intellectual bases with which I interacted evoked in me
early on a certain disorientation or disequilibrium, as well as scientific
skepticism. This ultimately strengthened my commitment to understand
– and where possible, to reconcile – the intellectual sources of the dis-
agreements. Where I am critical of mathematics education research, my
criticisms stem not from a desire to discredit any body of work but from
a commitment to improving the field from within it. Ultimately the per-
spective I take in discussing the gulf between the two communities comes
from having deep roots in both, the knowledge base to take an independ-
ent view, and the belief in the fundamental compatibility of valid, sci-
entific understandings obtained at different levels from different theoretical
perspectives.

Though this article cites selected publications by leading researchers,
its perspective is based to a considerable extent on numerous personal
discussions with people in the United States and abroad whose work I
respect highly. These include conversations with leading mathematicians
and physicists, some of whom have been dismissive of the scientific quality
of research in mathematics education; with leading mathematics education
researchers, some of whom have been dismissive of mathematical claims
to truth and scientific claims to knowledge about the real world; with lead-
ing psychologists, philosophers, and cognitive scientists adhering to dif-
ferent schools; with teachers and supervisors of school mathematics; and
perhaps most influentially for me, with doctoral students and recent doc-
toral graduates uncomfortable with the restrictions they feel are imposed
by the ‘paradigms’ in which they are being schooled.

I hope that the essay, while unavoidably controversial, will be heard
as a clear call to younger researchers for a major change of direction
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in the mathematics education research field. I shall argue for far greater
discernment than has been exercised in the past. It is time to abandon,
knowledgeably and thoughtfully, the dismissive fads and fashions – the
‘isms’ – in favor of a unifying, non-ideological, scientific and eclectic
approach to research, an approach that allows for the consilience of know-
ledge across the disciplines. This will help lay the needed foundation for a
sound intellectual relationship between the fields of mathematics education
research and mathematics.

2. SOCIOLOGICAL VS. INTELLECTUAL ISSUES

Some may highlight other reasons for a ‘cultural divide’. Indeed, part of
the problem is easily attributed to the sociology of groups in complex
bureaucratic and political institutions. Mathematicians and scientists work
in different types of organizations, and very different social environments,
from those in which primary and secondary school teachers work. Typ-
ically they also belong to different university departments, divisions, or
schools from those of their education colleagues, at least in much of the
United States and Europe. The nature, levels, and selectivity of profes-
sional qualification, the expectations for successful performance, and the
status conferred through various kinds of recognition, are very different in
mathematics and in education.

Sometimes the distinct groups vie for the same scarce resources. Fur-
thermore a certain cultural/psychological territoriality regularly asserts it-
self. There can be self-satisfaction – often accompanied by approval from
peers – associated with the devaluation of other groups. This leads on oc-
casion to arrogance and defensiveness, or to expressions of stereotyping,
prejudice, stigmatization, and contemptuous dismissal.

However, such sociological issues are not my topic here. I acknow-
ledge that they exist, and while they can be quite pervasive, I do not think
they are themselves strong enough to generate inevitable conflict or to
deserve designation as the primary causes of the schism. For both com-
munities, and for the next generation of students at all levels, the value of
achieving meaningful improvement in mathematics (and science) educa-
tion is extremely high – sufficiently high to provide a powerful incentive
for cooperation and meaningful collaboration. Many examples of such
good collaboration can be cited, including activities in New Jersey that
I have participated in and helped to organize.

My view is that there is another set of reasons for the divide – funda-
mental, intellectual reasons. At the root of the problem on the education
side has been the willingness of some leading researchers to commit them-
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selves to systems of belief, methodologies, educational philosophies, or
epistemological schools that fundamentally deny or dismiss a priori the
very integrity of knowledge in mathematics and science. It is not always
apparent to non-mathematicians and nonscientists that they are doing this.
Sometimes, however, it seems to be done consciously and intentionally, as
a way of inviting controversial attention and gaining a following.

There is a counterpart tendency in the mathematical sciences com-
munity. It is to impose – with unwarranted confidence – tacit and na-
ive models of learning that likewise deny or dismiss the very integrity
of knowledge in the field of education. Typically this involves separating
out, taking as ‘given’ and valuing highly certain mathematical content and
discrete skills, rather narrowly defined, for which competency at a surface
level is straightforwardly measured – while dismissing or disregarding the
complexity of the processes through which mathematical understanding
develops in students of diverse abilities and motivations.

Then the blindness to essential, core aspects of each other’s disciplines
becomes mutual.

The difficulties are compounded by differences in language use that res-
ult from the distinct tacit assumptions made in the different fields, further
impeding productive communication. It is this intellectual chasm that in
my view underlies many of the current problems; not merely the incidental
reasons of sociology or bureaucratic culture.

In some ways the intellectual gulf is of long standing, but in the past
decade it seems to have grown substantially in breadth and depth. Earlier
generations of mathematicians, psychologists, and educators made import-
ant contributions to the psychology of mathematical learning, develop-
ment, and problem solving that built on deep understandings of the bases
of mathematical, scientific, and educational knowledge. Mostly this took
place without the far-reaching dismissals, oversimplifications, and ideolo-
gies. In this category I would include, for instance, the essential work of
Jerome Bruner (Bruner, 1966; Bruner, Goodnow and Austin, 1956, 1986),
Robert B. Davis (1966, 1984), Zoltan Dienes (Dienes, 1963; Dienes and
Jeeves, 1965, 1970), Hans Freudenthal (Freudenthal, 1991; Streefland,
1994), Jean Piaget (1967, 1970), George Polya (1954, 1962, 1965), W.
W. Sawyer (1955, 1970); Richard Skemp (Skemp, 1982, 1986; Tall and
Thomas, 2002), and many others. Today, however, it is difficult to read
extensively in mathematics education without encountering belief systems
– the ‘isms’ – that are in conflict not only with fundamental mathematical
and scientific understandings, but also with each other.

In this article I would like to first partially characterize, in elementary
language, what I mean by the essential, core ‘integrity of knowledge’ in
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mathematics, science, and education, whose denial or dismissal does so
much damage. Then I shall provide some concrete examples of the dis-
missive epistemologies and their influence. My goal here is not to provide
a philosophical rebuttal to the varieties of ‘ultrarelativist’ epistemology,
which has been done effectively elsewhere (see references below). My pur-
pose is to emphasize the need for an approach to mathematics education re-
search that is inclusive rather than dismissive; that emphasizes, highlights,
and gives insight into key constructs essential to the mathematics and to
the physical sciences; and that relies on scientific methods to provide the
most objective possible conclusions regarding effective teaching practices.

To avoid possible misunderstanding, I would like to emphasize two
points at the outset.

First, in criticizing what I call dismissive approaches, I am not arguing
that either educators or mathematicians should accept existing systems of
thought merely because they are widely believed by others to be true. I
am not arguing for the uncritical acceptance of some ‘mathematical and
scientific authority’. Sometimes established belief systems deserve to be
challenged or overthrown, on rational and/or empirical grounds. For ex-
ample, at one time, astrology – the reading of character or the forecasting
of human events from the observed positions of heavenly bodies – was an
established system to which some prominent scientists as well as many
nonscientists adhered. But today there are valid reasons whereby the sci-
entific community rejects, not just the specific content, but the integrity of
the knowledge behind astrological character reading and forecasting. It is
rightly discarded as untrue (though the study of the psychological reasons
for the continued widespread belief in astrology is a fascinating subject).

The dismissals I challenge are those that take place on a priori ideo-
logical or philosophical grounds. I use the term ‘ideological’ to refer to
frameworks that are not open to falsification. Especially unfortunate, and
damaging, are the dismissals that occur without fundamental understand-
ings of what is being dismissed, and without offering any improved per-
spective that might replace what is dismissed with better explanations.

Second, let me stress that in advocating the abandonment of ‘isms’ by
the mathematics education community, I am not suggesting disregard of
the empirical observations or the often valuable insights that have been
reported by their advocates, and I am not advocating the replacement of
current ideologies by an ‘absolutist’ or ‘objectivist’ ideology. Ideologies
often contain ‘kernels of truth’, and where this is so we should preserve
and build on these even as we come to understand the limitations imposed
and the damage done by their dismissive aspects. In my own work, I have
drawn on certain ideas important in behaviorism, empiricism and logical



DEVELOPING COMPLEX UNDERSTANDINGS 179

positivism, and structuralism, as well as radical and social constructivism,
and socioculturalism – and I encourage others to draw on these ideas –
but in each case, without the need to reject the admissibility or potential
usefulness of other constructs.

3. INTEGRITY OF MATHEMATICAL AND SCIENTIFIC KNOWLEDGE

This section describes briefly what I mean by the ‘integrity of knowledge’
with respect to mathematics and empirical science. Its content is not novel.
My goal is to summarize, at an accessible level, some basic ideas in-
volved in understanding mathematics and the natural sciences that are
commonly neglected in the enthusiasm for ‘isms’ – and to point out their
central importance for mathematics education, despite some of the current
fashions.

As this article is mainly addressed to an audience of educational re-
searchers, it focuses most closely on the integrity of scientific and math-
ematical knowledge, toward which I argue the mathematics education field
must reorient itself.

Scientific truth

Within the mathematics education community, we need a wide and deep
understanding of the rational and empirical foundations of scientific truth,
validity and objectivity – not an a priori rejection of these ideas.

Elementary concepts underlying science include the use of classific-
ation, comparison, and quantitative measurement to render observations
communicable and, most importantly, reproducible (i.e., more objective).
They include distinctions among assumption, observation, and inference.
They include the roles of models and theories, including mathematical
models; the roles of qualitative and exploratory research; and the notions of
a repeatable experiment and replicable experimental results. They include
the use of statistics to validly infer the generalizability of scientific find-
ings from a sample to a population. They include the distinction between
correlation and causation; the notion of a controlled experiment and that of
a blind or double-blind experiment, and the rationales behind these. They
include the idea that experimental hypotheses can be confirmed or discon-
firmed empirically, with the outcome having implications for the truth or
falsity of theories compatible with the hypotheses. They include the idea
of using the quantitative ‘goodness of fit’ between theoretical predictions
and empirical data to establish a domain of applicability for a theory.
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The power of scientific methods consists precisely in our ability, through
their use, to achieve descriptions and understandings of the natural world
that to some degree transcend or factor out cultural bias, prevailing opin-
ion, powerful social belief systems, and individuals’ predispositions and
misconceptions. These methods do not entail claims of ‘absolute truth’ or
‘certain knowledge’ – indeed there is an important sense in which sci-
entific truth is by its nature tentative, and always approximate. Above
all, scientific theories and the hypotheses that derive from scientific the-
ories are in principle and practice falsifiable. But scientific methods do
involve warranted claims of objectivity, predictive validity, verifiability,
domains of applicability, and empirical truth. The practice of science in-
volves reaching warranted conclusions (based on evidence, experimenta-
tion, and rational inference) about a ‘real world’ that predated human exist-
ence, comprised of partially and imperfectly-understood physical, chem-
ical, and biological structures, and functioning according to partially and
imperfectly-understood physical laws.

Thus we can understand how an earlier theory such as classical Newto-
nian mechanics, for example – known since the early twentieth century to
be ‘false’ in our (objectively) relativistic and quantum-mechanical universe
– provides such a quantitatively good account of observations of macro-
scopic bodies moving at low velocities. The theory remains a valid close
approximation in a certain observational domain.

I use the term ‘integrity of scientific knowledge’ to describe the meth-
ods and constructs described here, because without them we have no pro-
cesses for doing science, and no basis for saying that claimed knowledge
is scientific or distinguishing science from pseudoscience or superstition.
‘Scientific’ claims made without such a basis are without foundation, with-
out scientific integrity.

Of course, none of these ideas are or should be immune from criti-
cism or deeper exploration. Discarding them a priori, however, can only
contribute to the chasm. There are two extremely important reasons why
mathematics educators and mathematics education researchers should un-
derstand the nature of scientific methods of inquiry, and the reasons they
are so powerful, even when their own work is exclusively exploratory,
qualitative, inventive, or interpretive.

First, mathematics is frequently characterized as ‘the language of sci-
ence’. The possibility of quantitative, reproducible measurement is one of
the things making that language possible. Much of mathematics is thus
descriptive of the physical world, and teaching this relation (rather than
denying that it is possible to represent the real world, or to have knowledge
about it) must be included as a goal of mathematics education.
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Second, scientific methods of research enable us to arrive at valid, gen-
eralizable research conclusions through well-designed experiments that
meet certain criteria. Mathematics education as a discipline includes as-
pects that are creative, interpretive, historical, and artistic, as well as as-
pects that are scientific. To substantiate claims for the effectiveness of
teaching methods, whether ‘constructivist’ or not, and of mathematics cur-
ricula, whether ‘reform’ or ‘conventional’, the mathematics education com-
munity needs to be able to affirm knowledgably the applicability of sci-
entific criteria to educational research, and strive to meet them (rather than
denying the very possibility of ‘objective’ knowledge). In my view the
absence of such a consensus, particularly among radical constructivists, ac-
counts for some justified skepticism among scientists and mathematicians
toward the “scientific constructivism” affirmed by Battista (1999, 2001).
Scientific criteria, appropriately understood and interpreted, are applicable
to qualitative as well as to quantitative research methods in the study of
mathematical learning and problem solving (Goldin, 1997a, 2000).

A strand of ultrarelativism

Let me be concrete and provocative. I already imagine some of my edu-
cation colleagues reacting negatively to my statement about astrology at
the end of the previous section, and to some of the scientific ideas above.
The following statements paraphrase actual conversations with prominent
individuals in mathematics education or related fields.

“What gives you the right to speak of valid reasons for rejecting the
belief systems of others? Isn’t this simply a dogmatic, hegemonistic, abso-
lutist assertion? Other world views (not unlike the objectivist, conventional
science in which you were trained, and to which you continue to adhere)
are just different, personally or socially constructed ways of understanding
the world around us. In some cultures, they are highly valued. Science
may be socially dominant today, in Western culture, and for this reason
Western science (as distinct from astrology, for instance) is important for
our students to learn so that they may participate in this aspect of our
culture. But we cannot ever know for certain that science is true or an
alternative false. Indeed, so-called ‘scientific facts’ presuppose the prior
acceptance of theories and a host of tacit assumptions within which the
facts are expressed. One cannot find an absolute or transcendent frame of
reference. Other systems – other experiential realities – are just as viable
for those who believe in them as science is for its believers.”

Such comments are paraphrases of philosophical ideas expressed fre-
quently in the educational research community. These ideas are rarely cri-
ticized within that community. They are not asserted exclusively or mainly
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about astrology, and they are not typically intended as arguments in sup-
port of any particular, nonscientific world view. Rather they are put forth
as arguments against the absolutism or dogmatism that their proponents
attribute to scientists and mathematicians, when the ideas of (objective)
truth or validity enter the discussion.

Advocates of these views often combine objective terminology, such
as ‘reality’, ‘truth’, or ‘world’, with subjective modifiers, speaking thus
of ‘subjective’ or ‘experiential reality’, the individual’s ‘world of experi-
ence’, ‘truth for the individual’, or ‘consensual truth in the culture’, as if
these are the only legitimate meanings or interpretations such terms can
have. ‘Knowledge’ is often taken to be synonymous either with ‘belief’,
‘viable belief’, ‘justified belief’, or ‘socially shared belief’ (and essentially
independent of the truth of the belief).

The ease with which these views are expressed today reflects, in my
view, the acceptance that has been accorded certain of the ‘isms’ – par-
ticularly (but not limited to) radical constructivism, social constructivism,
socioculturalism and postmodernism.

Now the arguments themselves contain important nuggets of validity.
They allude, for example, to the interplay between scientific facts and
the theories that frame them, and to the historical fact that ideas previ-
ously accepted as scientific ‘truths’ have often been superseded by wholly
new theories (Kuhn, 1970). They allude also to sophisticated issues in the
philosophy of science. Up to a point, they invite extremely interesting and
important philosophical discussions (Laudan, 1990). However, as a priori
assertions they are (unlike scientific claims) nonfalsifiable by evidence or
reason. They are not explanatory of the power of science in achieving
the prediction and control of natural processes. They do not enlighten
students or researchers as to the meaning of ‘truth’ or ‘validity’ as these
are understood by scientists. The nonfalisifiability of such ‘ultrarelativist’
philosophical stances depends ultimately on the dismissal of ‘rational’ ob-
jections to them, by considering rationality itself to be merely an arbitrary,
socially constructed system of discourse.

The comments paraphrased above exemplify the denial of the integrity
of scientific knowledge with which I am here concerned. The substant-
ive conversation with serious research scientists ends when they are put
forth as underlying principles of education or educational research. But
objectivity, reliability, validity, empirical verifiability, truth, and of course
falsifiability, stand at the center of what knowledge in the natural sci-
ences is about. When these are dismissed, the chasm between science and
education becomes virtually unbridgeable.
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It is because of the absence of a rational and evidentiary base for the
validity of astrology, together with the overwhelming compatibility of com-
peting models with the scientific evidence, that the integrity of astrological
‘knowledge’ is appropriately rejected.

There remain many open problems in the philosophy of science. Some
of these have to do with characterizing the diverse techniques grouped
together here as ‘scientific methods’; with describing the strengths and
limitations of the warrants for scientific claims (including limits on gen-
eralizability); and with understanding the foundations of the cross-cultural
efficacy of scientific methods. But in general these problems are not ad-
dressed at all by asserting vigorously the cultural dependence of science,
nor by highlighting the many occasions when the scientific community has
succumbed to unscientific political, religious, or cultural belief systems,
nor by dismissing from the start the notions of ‘truth’, ‘objectivity’, or
‘validity’ that pose the philosophical issues in the first place.

As a small example, consider the idea that scientific ‘facts’ are theory-
dependent. This idea is essential to science. Without the atomic theory, the
‘fact’ that the familiar yellow metal we call gold is an element with atomic
number 79 would be meaningless; thus the fact is theory-dependent. But
the sweeping assertions that all science is socially constructed, or that sci-
entists can never in principle represent the real world, do not help us the
least bit in understanding the truth of the fact that gold has atomic number
79 (or, indeed, that it had atomic number 79 long before human beings
evolved, or invented a system of numeration, or developed the periodic
table of the elements). They do not help us characterize the complex inter-
play between scientific facts and theories, or to distinguish science from
religion, politics, poetry, or any other human activity.

When central concepts of science are dismissed – based on a philo-
sophical ‘paradigm’ – by those who educate teachers in mathematics (the
language of science), or by those who do research on the learning of math-
ematics in the hope of influencing educational policies and practices, then
those who engage in the dismissal to that extent compromise themselves as
‘mathematics’ educators. Furthermore, it is one thing to raise and discuss
many sides of sophisticated philosophical questions about the limits of sci-
entific truth, and how scientific ideas are expressed, with those who already
understand thoroughly the methods of science and their value as a means
of achieving objectivity and predictive power. In considering many of the
statements by proponents of ultrarelativist ‘isms’ (see below), I can and
do appreciate that under certain technical interpretations some interesting
or useful point is being made. But it is something else entirely to deny
the very possibility of scientific truth or objectivity when we are teaching
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children, or teachers of children, who have not the knowledge base to
appreciate what scientific methods can achieve.

Mathematical truth

Still more importantly for mathematics education, ‘truth’ is a central no-
tion of mathematics (as well as a long-standing, fascinating topic in the
philosophy of mathematics). Here the concept is used to mean something
different from (but compatible with) the notion of ‘empirical truth’ in sci-
ence. Again my discussion here can be only at an elementary level, but
it is a level appropriate to the mathematics taught in elementary schools,
secondary schools, and undergraduate colleges.

The field of mathematics has been characterized by many as the study
of pattern (e.g. Sawyer, 1955, 1970; Steen, 1990). This includes patterns
detected in the natural world, and patterns in systems invented by human
beings. Some but not all of the latter correspond to observable, real-world
patterns. To study patterns in a system, mathematicians seek to character-
ize the system as precisely as possible. One way in which this is done is to
formulate axioms or postulates that describe the system. Thus we have a
collection of propositions – mathematical statements – that are taken from
the outset to be ‘true’; that is, their truth is assumed.

However, when postulates are interpreted as descriptive of some con-
crete system or class of systems, we have a distinct but related notion of
‘truth’. The latter notion of ‘truth’ (i.e., the applicability of the axioms to
the system under discussion) cannot merely be assumed. It needs to be
checked.

For example, multiplication is assumed to be a commutative binary
operation for some categories of mathematical systems. When we inter-
pret multiplication as is usual for natural numbers, one can conjecture its
commutative property and check it in various ways – in an elementary
schoolroom, the teacher might guide the children to discover that the dis-
crete objects in a 3×5 array can be placed in one-to-one correspondence
with the objects in a 5×3 array by rotating one of the arrays. The children
may then generalize from this pattern. But when we interpret multiplic-
ation as is usual for square matrices, the property is false (though some
other algebraic properties of addition and multiplication remain true). We
thus associate systems of matrices with different mathematical categories
(e.g., non-commutative algebras, where multiplication is not assumed to
be commutative) from commutative systems such as the natural numbers,
integers, or rational, real, or complex number fields.

Further propositions that can be derived (i.e., ‘proven’) from a given set
of assumptions, by means of well-defined rules of inference, are likewise
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considered to be ‘true’. These are called theorems. If the rules of inference
are appropriate, the theorems also will be descriptive of the same system or
class of systems that the original assumptions describe. Thus the enduring
achievement of Euclid can be understood as follows: he was able to de-
scribe geometric entities (points, lines, triangles, circles, and so forth) by
means of relatively few assumed axioms and postulates, and prove from
these many complex and sophisticated theorems using explicit rules of
logical inference.

The axioms and postulates of Euclidean geometry were considered from
ancient through medieval times to be intuitively obvious, or ‘self-evident
truths’. The rules of inference (to the extent they were precisely stated)
were likewise thought to be intuitively apparent or necessary ‘laws of
logic’. During this period of history, mathematicians rarely distinguished
the ‘logical truth’ of mathematical axioms and theorems from their truth
as interpreted for specific systems. Likewise, in classical antiquity, little
distinction was made between ‘truths’ of mathematics and ‘truths’ of the
natural world. Centuries ago (but not today) mathematical truth was un-
derstood as absolute, and the most elementary truths were thought to be
self-evidently so – as in the case of the Euclidean postulate that any two
(distinct) points lie on one and only one (straight) line. However, it was
understood also in ancient times that many of the theorems of geometry
are not obvious. The power of geometry in particular, and mathematics
in general, inheres in part in its capability of proving results concerning
geometric shapes, numbers, or other still more abstract entities, that are
true but far from apparent. That is, mathematics provides definite answers
to questions about patterns that without its methods cannot be effectively
addressed.

The notion of ‘truth’ in mathematics has evolved importantly over cen-
turies of history (Kline, 1980). A major breakthrough, and a concomitant
change of perspective, came with the understanding that the mathematical
‘truth’ of propositions is always in relation to the system of axioms within
which the propositions are formulated – and that such axiom systems can
be far more arbitrary than once was believed. This understanding did not
come and could not logically have come from the general, a priori argu-
ments of radical constructivists. It arose from specific, important logical
and mathematical developments.

Consider one brief example. Euclidean plane geometry was formulated
to be about idealized points, (straight) lines, and circles lying in a plane as
we might ordinarily visualize them. The proposition that ‘any two points
lie on one and only one line’ seems then to be an elementary statement
about these entities, properly understood as we imagine them. Like the
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other propositions of Euclid, the proposition appears to be a ‘self-evident
truth’. But suppose the word ‘point’ is interpreted to mean ‘pair of an-
tipodal points on the surface of a sphere’. Suppose that ‘straight line’
is interpreted as ‘great circle on the surface of a sphere’. Then the pro-
position becomes, ‘any two pairs of antipodal points on the surface of a
sphere lie on one and only one great circle,’ which is also ‘self-evident’
(depending perhaps on one’s capacity for visualization) but which ‘means’
something quite different. Now most of Euclid’s definitions and postulates
about points and lines translate into statements about pairs of antipodal
points and great circles; they remain true in the latter interpretation as
well as the former. A straight line traverses the shortest distance between
two points (remaining, of course, on the surface) in either interpretation.
However, the famous ‘parallel postulate’ does not hold for the great circle
interpretation. In this interpretation, distinct ‘straight lines’ always inter-
sect! We thus obtain a concrete, Euclidean model (embedded in three
dimensions) that satisfies non-Euclidean geometric axioms.

The naive objections – that a straight line does not ‘really mean’ a great
circle, and that the ‘real’ shortest distance between points on a sphere’s sur-
face cuts through the interior – are familiar to mathematicians introducing
these ideas to students for the first time. The level of mathematical abstrac-
tion required here entails abandoning this notion of ‘real meaning’ in favor
of the power of deduction from axiomatic systems whose interpretations
are not fixed but variable.

Different non-Euclidean geometries, each as consistent as Euclidean
geometry, were formulated by modifying Euclid’s system of postulates.
Algebraic systems were constructed, generalizing the complex numbers, in
which multiplication is non-commutative (first the quaternions, followed
later by matrix algebras and operator algebras). Multi-valued logics were
invented that are as consistent as two-valued logics. So-called ‘nonstand-
ard analysis’ is understood to be as valid as conventional real analysis.
Examples abound in mathematics of exotic topologies that nevertheless
obey conventional axioms regarding open and closed sets.

There is nothing mysterious today about these perspectives, nor in the
multiplicity of mathematical examples and counterexamples. By changing
conventional assumptions we obtain new mathematical categories and new
mathematical objects – i.e., new kinds of patterns – whose properties are
different from each other. It makes no sense in mathematics to ask which
axiom system is ‘really’ true. It does make sense to ask whether a system
of axioms is (internally) consistent or not, or whether a particular axiom
system applies to a particular model or not.
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Some mathematical systems more accurately fit measurements of the
physical world than do others. The best geometries we have for describing
general relativity are non-Euclidean geometries. The best algebraic sys-
tems we have for describing quantum mechanics and quantum field theory
are non-commutative systems.

But these understandings come following the realization that the theor-
ems that follow from a system of mathematical axioms do not depend on
the particular entities that the axioms are imagined to be about.

It was thought in the late 19th and early 20th centuries that a complete,
consistent logical foundation for this level of abstraction could be achieved
through the precise and rigorous formalization of mathematical statements,
axioms, and rules of inference. What was discovered through the pursuit
of that program was just the opposite – Gödel (1931) rigorously proved
(roughly speaking) that any mathematical system sufficiently complex to
describe even the natural numbers was necessarily incomplete. Further-
more, the consistency of its assumptions necessarily could not be fully
demonstrated (Nagel and Newman, 1958; Hofstadter, 1979).

In short, the notion of ‘truth’ in mathematics has evolved greatly as
mathematical understanding has increased. ‘True’ and ‘provable’ are no
longer synonyms.

Nevertheless, mathematical knowledge incorporates fundamentally the
objective truth of theorems relative to axiomatic systems. Here I use the
term ‘objective’ to express the idea that once the terms and symbols are
defined, and the axioms and rules of inference are agreed upon, then the
correctness of well-stated conjectures (whether they are in fact theorems,
or are false, or possibly indeterminate) is in a logical sense established.
It is no longer a matter of individual preference or interpretation, social
convention, negotiation, or subjective conception.

To speak prosaically, some mathematics is conventional – but having
established the conventions that allow meaningful communication, what
follows from the conventions is not! Some mathematical answers and pro-
cedures are correct, and others are wrong. Some ideas about mathematics
are valid mathematical conceptions, consistent with the system(s) under
discussion, while other ideas are mathematical misconceptions or mistaken
conceptions.

Hence it is essential in mathematics education to distinguish between
alternate conceptions and misconceptions. The former term can appro-
priately refer to situations where the student tacitly adopts a nonstandard
convention, or bases a conclusion (validly) on assumptions different from
those expected by the teacher, or describes a different mathematical pattern
from that expected by the teacher, or uses (validly) a nonstandard method
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to arrive at a mathematical conclusion, or brings a different intuition (con-
ceptual or imagistic representation) to the situation from that of the teacher
or that described in the textbook. The conception may then be mathemat-
ically valid, but in some way not the expected one – a bona fide alternate,
even if it is not ‘viable’ in the context of negotiated mathematical as-
sumptions or conventions. The latter term appropriately refers to situations
where the student makes a logical mistake, adopts internally contradictory
conventions, conceives some property of a pattern incorrectly (so that it
is not true), represents a mathematical relationship invalidly, or uses an
incorrect, logically inappropriate, or inapplicable method to arrive at a
mathematical conclusion – even when the conception is psychologically
‘viable’ for the individual.

In speaking of the integrity of mathematical knowledge being denied
categorically by some in the education community, I refer to this notion
of mathematical truth and to the knowledge base of (objective) mathem-
atical results, properties of systems of representation, theorems, proofs,
and logically valid techniques and methods of reasoning that enable us to
arrive at such mathematical truths, as well as the role of mathematics as
representational of properties of the physical world.

Of course there are also deep, unresolved issues in the philosophy of
mathematics. Some are of long standing, and many are suggestive of sim-
ilar issues in the philosophy of science or general questions in the philo-
sophy of knowledge. How may the notions of mathematical existence and
mathematical truth be further refined logically? What accounts for the ex-
traordinary power of mathematics in describing the natural world? What
are the psychological, social, cultural, and aesthetic influences on the es-
tablishment of conventional mathematical systems, and how do they func-
tion? What is the relation between the human mind and mathematics (Chan-
geux and Connes, 1995)?

The very notion of a ‘pattern’ (that the field of mathematics studies)
already raises interesting questions. In what sense do patterns exist apart
from the mind or minds construing them? To what degree should patterns
be regarded as objective, subjective, or both – ‘out there’ (external), ‘in
here’ (internal, subjective, and idiosyncratic), or relational? In what sense
can it be said that the pattern, and truths about the pattern, existed be-
fore the conventions were established? I am not in any way proposing a
return to Platonism as the answer to this important question. I am, how-
ever, suggesting that the a priori rejection of any such notion of ‘truth’ or
‘existence’ is not justified, and is part of the problem of the cultural divide.

The nugget of value in some of the ‘isms’ fashionable in education is
their emphasis on addressing the subjective component of ‘pattern’ – psy-
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chologically subjective, for the individual student, and socially subjective,
for the classroom culture – but unfortunately, this has been done to the
exclusion of other components.

Real progress with the questions posed here contributes to our under-
standing of the nature of mathematics, including the nature of mathemat-
ical truth. It takes account of the above mathematical ideas, and more. In
contrast, exponents of some of the ‘isms’ claim to have solved the prob-
lem by dismissing (intentionally or not) the very possibility of ‘objective’
mathematical truth or validity, seeming to make deeper mathematical un-
derstanding of the basis of such objective truth unnecessary. This again
denies the integrity of the discipline in which we are committed to educat-
ing children and teachers of children. To that degree, those who engage in
the dismissal again compromise themselves as ‘mathematics’ educators.
This, in my view, is a core intellectual issue underlying the schism.

4. INTEGRITY OF EDUCATIONAL KNOWLEDGE

The denial and dismissal of the integrity of knowledge occur in both dir-
ections across the cultural divide.

A substantial knowledge base, consistent with numerous empirical
quantitative and qualitative studies, has evolved from several generations
of research on mathematical learning, problem solving, teaching, and de-
velopment. It includes the characterization of mathematical skills, con-
cepts, schemata, cognitive structures, and the relationships among all of
these, as they are developed by individuals. It takes account of the com-
plex and highly diverse ways in which children of various ages, levels of
development, and structures of ability learn skills and construct or infer
meanings, find patterns, solve problems, draw inferences, and construct ta-
cit or explicit mathematical understandings. Among the important distinc-
tions are those between conceptual knowledge and procedural knowledge,
tacit knowledge and knowledge that is overt, discovery learning processes
and reception learning processes, internal systems of cognitive representa-
tion and external or conventional representational systems, contextualized
mathematics and mathematical abstraction.

Mathematics educators know something about the fundamental import-
ance in thinking and learning processes of imagery and visualization, dis-
course, language and metaphor, strategies and heuristic planning, reas-
oning by analogy, affect, motivation and belief systems, and social and
cultural contexts. There is now considerable evidence supporting the view
that ‘mathematical ability’ is not a unitary construct, but involves many dif-
ferent components – and that different children learn optimally in different
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ways. Educational researchers appreciate the severe limitations inherent
in trying to separate the ‘content’ of mathematics from the processes of
learning and doing mathematics through which mathematical content is
meaningfully acquired.

In the field of education, researchers and experienced teachers under-
stand well that mathematics learned solely as a system of rules and contin-
gencies is learned nonmeaningfully by many children, although mastery of
standard algorithms and procedures remains an essential curricular goal.

These distinctions and perspectives, acquired through decades of re-
search, are as central to the field of mathematics education today as the
notion of ‘truth’ is to the field of mathematics. Unfortunately, some math-
ematicians – with a confidence that is unwarranted by their expertise –
tacitly deny or dismiss the integrity of this knowledge base, preferring a
much simplified view. To paraphrase such a view (based, again, on nu-
merous personal conversations with mathematicians whom I respect), a
collection of standard notations, terminology, mathematical algorithms,
and problem-solving procedures are tacitly taken to define the content
of school mathematics, and to constitute the ‘material that needs to be
covered.’ Skills in performing these procedures rapidly and automatically
are seen as the main or only important prerequisites to later conceptual un-
derstanding. Mathematical ability is often assumed to be an innate, unitary
characteristic of the individual. Achievement is defined by test scores, and
thus mathematical ability is ultimately to be measured by speed and accur-
acy on tests – that is, it refers exclusively to how rapidly the student can
reproduce formal notational procedures and solve problems using them,
after training and practice in them.

Thus I can hear some of my mathematical colleagues, of ‘traditionalist’
inclination, commenting rhetorically, “This is the trouble with education.
How can you expect students to master concepts at a deep level when they
cannot even perform straightforward operations? Some students just don’t
have the ability to understand the concepts behind the mathematics, or to
solve non-routine problems. You’re never going to get them to do it. We
have to give these students at least the basic skills, and to do that there is
no alternative to a lot of drill and practice. In the meantime, we shouldn’t
hold back the more talented students on their account. I myself learned
mathematics perfectly well in a ‘traditional’ program. The important thing
is just to focus on the content.”

Again, there is a nugget of truth here. First, there are some underlying
reasons – important to appreciate – that many mathematicians see math-
ematics as comprised of symbolically-written abstract systems. Formal
logical reasoning is powerful when applied in such systems. Most math-
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ematicians appreciate how in higher mathematics visual intuitions can mis-
lead, and thus have come to trust rigorous proofs carefully formulated
in symbolic notation. This creates a certain reluctance to focus too long
on imagery, on mathematics ‘in context’, or on students’ nonstandard,
spontaneously constructed representations. It is consistent with placing the
main emphasis on formal notational competencies. Skill in the perform-
ance of symbolic mathematical operations is indeed a necessary prerequis-
ite to more advanced work, and such skill interacts with the development of
meaningful understanding. This aspect of learning is too often undervalued
or neglected by educators. And ‘holding back’ students who are ready and
motivated to go forward is (of course) poor educational practice.

However this set of views, at least tacitly, disregards and dismisses
much of the valid knowledge base that has developed in the mathematics
education research field, a few features of which I have mentioned above.
It is just as nonfalsifiable as the educational ‘isms’– when ‘real’ mathem-
atical achievement is defined by conventions, rules, and test scores, and
mathematical ability is defined through speed and accuracy on standard-
ized items, it is tautological that students of greater ability will achieve
more. Drill and practice in items parallel to the test items will in the short
term raise achievement. Recent politically-motivated suggestions in the
United States to dismiss qualitative research studies in education as ‘un-
scientific’ while recognizing large-scale, quantitative studies, are them-
selves scientifically unsound. They are likely to skew attention toward
easily-measured, short-term gains in performance on discrete mathemat-
ical skills, and away from the long-term study of meaningful and transfer-
able understandings.

It should be clear that I do not maintain that most mathematicians or
natural scientists concerned with education hold dismissive views. Only
some do, just as only some educational researchers adhere to dismissive
ideologies. But the fact that some in each field do, and that they achieve
recognition from their colleagues for espousing those views, provides part
of the rationale for the counterpart dismissals on the other side of the
cultural divide.

5. DISMISSIVE EPISTEMOLOGIES

From the 1950s to the 1970s behaviorism was in its ascendancy in the
United States, though far less so in Europe. Behaviorist psychologists re-
jected a priori all that could not be directly, empirically observed (Skinner,
1953, 1974), in accord with the ‘verifiability criterion of meaning’ sug-
gested by logical positivists (Ayer, 1946). Thus they excluded not only
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information gained through introspection, but also any discussion of in-
ternal mental states, cognitive models, thoughts or feelings. Terms such as
‘understanding’ were expressly forbidden. Neo-behaviorists were some-
what more flexible, allowing ‘internal responses’ to serve as intermediate
links between observable (external) stimulus situations and (behavioral)
responses (e.g. Gagné, 1970). This exclusive reliance on that which was
empirically observable allowed behaviorists to claim scientific validity for
their dismissive stance, though examples abound in the natural sciences of
constructs that have been inferred rather than directly observed.

Behaviorism (together with the quantitative techniques of psychomet-
rics) fueled the ‘behavioral objectives’ approach to mathematics education,
which fit with school accountability measures based on skills tests (Mager,
1962; Sund and Picard, 1972). By the 1970s, behaviorism was fueling the
‘back to basics’ counterrevolution to the ‘new mathematics’, which had
been largely a mathematician-led movement. School curricular objectives
were being rewritten across the USA to decompose them into discrete,
testable behaviors (cf. Erlwanger, 1973, for a contemporary critical view)
– and to eliminate the banned words. Because the pendulum has sub-
sequently swung so far in the other direction, it is difficult for students
today to apprehend how completely behaviorism came to dominate. Con-
structs associated with other points of view became wholly unacceptable
in some educational circles, and school practices in mathematics suffered
greatly.

As a school of psychology, behaviorism succumbed to the successes of
theoretical ideas behind cognitive-developmental research and structural
linguistics, and to the new, powerful constructs associated with the emer-
ging field of cognitive science. These could not be formulated naturally in
behavioral terms. Meanwhile the reform movement in mathematics educa-
tion gathered strength in the USA through the 1980s and into the 1990s,
challenging prevailing practices that had been encouraged by behaviorists.

Radical constructivists were among those contributing to the rejection
of behaviorism. Thus von Glasersfeld wrote,

For about half a century behaviorists have worked hard to do away with ‘men-
talistic’ notions such as meaning, representation, and thought. It is up to future
historians to assess just how much damage this mindless fashion has wrought.
Where education is concerned, the damage was formidable.

(von Glasersfeld, 1987, p. 10)

However, as fashions changed, many mathematics education researchers
turned to new, dismissive intellectual trends that denied the very possibility
of ‘objective’ truth – thus dismissing from the outset the central construct
of mathematical inquiry. This denial did not derive from empirical evid-
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ence, nor did it draw strength from having made an empirically proven
contribution to understanding the learning or doing of mathematics. It was,
rather, a philosophical denial.

Radical constructivists excluded the very possibility of ‘objective’ know-
ledge about the real world, focusing solely on individuals’ ‘experiential
world’. Abstract mathematical structures, apart from individual knowers,
were to be rejected. ‘Viability’ (a subjective notion) was to replace (object-
ive) ‘validity’. Cognition and learning could only be regarded as adaptive
responses to the individual’s world of experience, and never in principle
as reaching real-world ‘truths’. Those who studied individuals’ construct-
ive processes of learning, without honoring the radical constructivists’ a
priori denials of the notions of truth, objectivity, or the possibility of rep-
resenting the real world, were labeled ‘trivial constructivists’ or ‘weak
constructivists’.

Constructivism drops the requirement that knowledge be ‘true’ in the sense that it
should match an objective reality. All it requires of knowledge is that it be viable,
in that it fits into the world of the knower’s experience, the only ‘reality’ accessible
to human reason. (von Glasersfeld, 1996, p. 310)

Radical social constructivists saw mathematical (and scientific) truth as
merely negotiated social consensus, while the postmodernist trend has been
to attribute such consensus to structures of power and hegemony. A per-
spective frequently quoted with approval is that of Feyerabend, who dis-
missed the possibility of scientific truth. For example Steedman (1991)
quoted Feyerabend:

. . . this appearance of success [of a scientific theory] cannot be regarded as a sign
of truth and correspondence with nature. . . . Such a system will of course be very
‘successful’ not, however, because it agrees so well with the facts, but because no
facts have been specified that would constitute a test and because some such facts
have even been removed. Its ‘success’ is entirely man-made. It was decided to
stick to some ideas and the result was, quite naturally, the survival of these ideas.

(Feyerabend, 1968, quoted in Steedman, 1991, p. 4)

Steedman continued, “Feyerabend’s respect for science, and indeed all
knowledge, has led him to want science understood for what it is, rather
than being misunderstood as a secularized religion.” This suggestion that if
one does not dismiss the ideas of ‘truth’ and ‘correspondence with nature’,
one is taking science as a ‘secularized religion’, exemplifies the point
where the chasm becomes unbridgeable.

However, my criticism of these dismissals should not be misinterpreted
as devaluing the empirical study of how truth claims develop in mathem-
atics, or the social processes involved in achieving scientific knowledge.

Interestingly, the a priori dismissal by the behaviorists of notions such
as ‘understanding’ and ‘acquisition of concepts’ in mathematics educa-
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tion has recurred in the postmodernist context. In a discussion of the so-
called ‘paradigm wars’ in education, Lerman argues for the abandonment
of such words and phrases not only because they are unobservable, but
because they are ‘tools of regulation’ (Sfard, Nesher, Lerman and Forman,
1999). The emphasis on power and hegemony relationships implies there
are moral/ideological as well as epistemological/ideological reasons fuel-
ing the dismissals. In my view this is a troubling trend that lends additional
urgency to our moving away from the ‘isms.’

A detailed critique focusing on radical constructivist epistemology in
mathematics education may be found in Goldin (1990), where other, earlier
radical constructivist articles are also cited. Detailed philosophical cri-
tiques focusing on science and science education may be found in Nola
(1998) and Kragh (1998). Written well before the ‘Math Wars’ had begun,
the first-mentioned article highlighted the danger in radical constructivist
epistemology that worthy, non-behaviorist ideas in mathematics learning
and teaching “may be rendered invalid in the eyes of those who (with
justification) seek an empirical, scientific basis for mathematics education
research” (Goldin, 1990, pp. 39–40).

It seems to me that exactly this has now taken place. A research forum
at the 24th Conference of the International Group for the Psychology of
Mathematics Education attracted a large audience from many countries.
Panelists and audience members reacted to a pointed question posed in a
column the year before by Diane Ravitch, a former high-level government
official in the U.S. Department of Education:

. . . unlike educators [emphasis added], physicians have canons of scientific valid-
ity . . . Why don’t we insist with equal vehemence on well-tested, validated edu-
cation research? Lives are at risk here, too. (Ravitch, 2000, p. 75)

Unfortunately, in my view, the panel and the audience – which took a
variety of stances – were very far from replying, or wanting to reply,
“Of course educators have canons of scientific validity.” There was no
consensus supporting the value, the feasibility, or even the possibility of
obtaining valid, ‘objective’ research findings in mathematics education
(Boero, 2000; Brown, 2000; Lin, 2000). In the dominant climate of ul-
trarelativism, this is hardly surprising. It makes Battista’s continuing ef-
fort to elucidate an empirically-based, ‘scientific constructivism’ (Battista,
2001) highly unlikely of success.

In my view it is also the constructivists’ exclusive emphasis on the ‘ex-
periential world’, highlighted in mathematics teacher education courses
and doctoral programs, that leads inevitably to the dismissals that have
helped fuel the ‘math wars.’ For example, Loveless (2001) quotes a letter
of concern as exemplifying one aspect of the conflict:
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The following statements were taken from the MathLand Teacher’s Guides:
Question: “How should teachers approach this unit if they are uncomfortable with
the number systems presented here?” (Gr. 5)
Answer: “The beauty of the constructivist philosophy is that it doesn’t rely on the
teacher as the dispenser of knowledge, but as a facilitator of experiences. In this
case, the teacher should view herself as a co-learner.”
. . .
‘. . . there is no such thing as a number fact. There are only relationships and these
relationships are created inside the child’s head.’

(quoted in Loveless, 2001, p. 204)

The current climate leaves the mathematics education field susceptible to
new sweeping claims of an ultrarelativist nature, that are likely to widen
further the gap with mathematics. Most recently, the idea that mathem-
atics consists entirely of ‘conceptual metaphors’ has been offered as the
basis of a new philosophy, to be called ‘mind-based mathematics’, and
a new discipline, to be called ‘mathematical idea analysis’ (Lakoff, G.
and Núñez, R., 1997, 2000). Lakoff and Núñez (like Changeux in Chan-
geux and Connes, 1995) see the human activity of doing mathematics as
a domain for empirical investigation through neuroscience and cognitive
science, a perspective that I share. But predictably, in the current ultrarelat-
ivist climate, their dismissive philosophical claims have attracted attention
and praise in the mathematics education community. The mathematical
and philosophical problem of the logical foundation of mathematics is
simply and easily dismissed – there can be no foundation; the idea of
one is just a metaphor. In mind-based mathematics (not unlike radical
constructivism) there are only conceptions, no misconceptions:
The so-called misconceptions are not really misconceptions. This term as it is
implies that there is a ‘wrong’ conception, wrong relative to some ‘truth.’ But
Mathematical Idea Analysis shows that there are no wrong conceptions as such,
but rather variations of ideas and conceptual systems with different inferential
structures . . . (Núñez, 2000, p. 19)

Ideas and visualizations (familiar to mathematicians) that underlie and
motivate abstract constructions are renamed as metaphors, presented as if
newly-discovered, and taken to be the mathematics. Mathematicians who
might disagree are caricatured as Platonists, naive realists, or empty form-
alists, in disregard of the way the notion of truth has evolved. In this view
mathematics cannot possibly ‘exist’ independently of human metaphors
(and as we know, when something is just a metaphor, it is not literally
true). Critiques of these views in the context of mathematics education
have been published elsewhere (Goldin, 1997b, 2001).

I understand that today some variation of dismissive ultrarelativism can
be a tempting response to closed-minded, apparently ‘absolutist’ views
among mathematicians. It may seem to justify educators’ openness to stu-
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dents’ various ways of thinking mathematically, to their placing emphasis
in education on the ideas of mathematics, on imagery and metaphor, open-
ended problem solving, discovery processes, social and cultural environ-
ments, and systems of belief – all that, I strongly favor! But the ultrarelat-
ivist ‘isms’ undermine the connection between mathematics education and
mathematics. They erect barriers even to formulating goals that should be
among those central to mathematics education – conveying something of
the nature of mathematical truth; demonstrating not only the power but the
objectivity of valid mathematical reasoning; bringing learners to experi-
ence the processes of abstraction, generalization, precision of reasoning,
and proof; as well as identifying the same abstract mathematical concepts
and structures in a variety of different conceptual domains. These should
be goals not only for future mathematicians, but also for the large majority
of children studying mathematics.

6. CONSILIENCE OF KNOWLEDGE

As I have suggested in the earlier discussion, ideologies that become popu-
lar usually have important ‘kernels of truth’. Behaviorism rightly rejected
the prior reliance in psychology on inadequate, simplistic, or unsubstan-
tiated mentalistic constructs as psychological explanations. It contributed
to connecting psychological research to its empirical foundations. It re-
jected (validly) values as evidence, and called into question the broad
generalizations claimed from clinical reports and anecdotal evidence.

Radical constructivism helped overthrow dismissive behaviorism, ren-
dering not only legitimate but highly desirable the qualitative study of
students’ individual reasoning processes and discussions of their internal
cognitions (but with the unfortunate provision that no ‘objective validity’
could be claimed for the conclusions of research). It led to many in-depth,
observational studies that have been of value to those who have advocated
meaningful, guided discovery-oriented mathematical learning.

Social constructivism pointed to the importance of social and cultural
contexts and processes in mathematics as well as mathematics education,
and postmodernism highlighted functions of language and of social insti-
tutions as exercising power and control.

And ‘mind-based mathematics’ emphasized the ubiquity and dynamic
nature of metaphor in human language, including the language of math-
ematics.

Unfortunately, in emphasizing its own central idea, each of these has
insisted on excluding and delegitimizing other phenomena and other con-
structs, even to the point of the words that describe them being forbidden –
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including central constructs of mathematics and science – or, alternatively,
certain meanings being forbidden to these words. Yet the ideas summar-
ized here as comprising the ‘integrity of knowledge’ from mathematics,
science, and education are not only well-known, but have proven their
utility in their respective fields. There are ample reasoned arguments and
supporting evidence for them.

The understandings derived from many different research approaches
are necessary to mathematics education. Important and valid research find-
ings have derived from within many of the ‘isms’. Educational researchers
who might be characterized as ‘behaviorists’ or ‘neo-behaviorists’, as well
as those who might be termed ‘ultrarelativists’, have performed ground-
breaking work. Mathematicians who might be characterized as ‘Platon-
ists’ or ‘formalists’, as well as those holding quite different views, have
achieved important mathematical insights, and argued for attention to im-
portant educational priorities.

We enhance our understandings of complex processes when mathem-
aticians and educators who focus on different aspects of those processes
are able to communicate effectively and learn from each other, not when
essential distinctions are erased or the most important constructs of other
disciplines dismissed. There are some hopeful signs. Despite the cultural
divide, there are numerous examples of mathematicians and educators work-
ing together, in collaborative environments, on common problems. For
instance, a major grant in 2002 was awarded by the U.S. National Science
Foundation to the University of Georgia and the University of Michigan,
for a Center for Proficiency in Teaching Mathematics involving mathem-
aticians and mathematics educators at both institutions. One research focus
is to characterize mathematical knowledge for teaching, and learn how
teachers can be helped to better develop such knowledge (see Ball, 2003).

In my own studies of mathematics and science, and of the mathem-
atical learning and problem solving processes of students, I have never
found mathematical and scientific knowledge to be contradictory of edu-
cational knowledge. In my mathematics education research work, I have
found the notions of ‘representation’ and ‘representational systems’ to be
especially useful constructs, once the dismissive epistemologies have been
bypassed. These ideas, and the ways in which they allow for the unification
of many aspects that various ‘isms’ have emphasized and others have dis-
missed, are described in detail elsewhere (Goldin, 1998a,b, 2002; Goldin
and Shteingold, 2001).

We need theoretical frameworks that are neither ideological nor fashion-
driven. They should be such as to allow their constructs to be subject to val-
idation. Their claims should be, in principle, open to objective evaluation,
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and subject to confirmation or falsification through empirical evidence.
The idea that the (valid) knowledge human beings acquire in different
domains (through different means appropriate to those domains) is coher-
ent and compatible rather than contradictory, has been called consilience
(Wilson, 1998). We expect what we learn from evolutionary biology and
genetics to ‘fit’ with what we learn from brain science and neuroscience,
and we expect the latter to ‘fit’ with behavioral, motivational, and social
psychology. Likewise it is reasonable to expect the different useful and
valid descriptions of learning emanating from cognitive science, linguist-
ics, developmental psychology, and mathematics education research, to be
fundamentally compatible with each other. Our knowledge bases in math-
ematics and the natural sciences should ‘fit’ easily with and augment the
knowledge bases deriving from educational research in these domains.

I wish to conclude, then, by urging others doing mathematics education
research to accommodate in their work the most applicable and useful
constructs from many different approaches, but without the dismissals.
In particular, mathematics education researchers need to understand the
damage being caused by dismissive ultrarelativism, and bring to an end the
uncritical acceptance of it, without resorting to other, equally dismissive
perspectives. It is past time to thoughtfully reincorporate mathematical and
scientific truth, objectivity, correctness, and validity, alongside other ideas,
in the thinking of the mathematics education research community.
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